English Version

<u>S1 Summer Exercise – Simple Equation</u>

<u>Removing brackets 撤去括號:</u>

Consider the equation 3(x+1) = 2x - 7.

$$3(x+1) = 2x - 7$$

$$3x + 3 = 2x - 7$$

$$3x - 2x = -7 - 3$$

$$x = -10$$

Remove the bracket:

$$3(x+1)$$

$$3(x+1)$$

The solution of the equation $\overline{3(x+1)} = 2x - 7$ is -10.

Eliminating Denominators 消去分母:

For equations with denominators, we may *multiply both sides* of an equation *by the same value* to eliminate the denominators.

Consider the equation
$$\frac{y}{3} + \frac{y}{4} = 7$$
.

$$\frac{y}{3} + \frac{y}{4} = 7$$

$$\left(\frac{y}{3} + \frac{y}{4}\right) \times 12 = 7 \times 12$$

$$\frac{y}{3} \times 12 + \frac{y}{4} \times 12 = 84$$

$$4y + 3y = 84$$

$$7y = 84$$

$$y = \frac{84}{7}$$

$$= \underline{12}$$

The solution of the equation $\frac{y}{3} + \frac{y}{4} = 7$ is 12.

Quick Review:

Addition 加法	Sum 和
Subtraction 減法	Difference 差

Multiplication 乘法	Product 積
Division 除法	Quotient 商

Algebraic Equations in One Unknown

🚽 Level 1

Solve the following equations. (1-6)

1.
$$x-4 = -7$$
 2. $2-y = 10$

 3. $8p = 64$
 4. $-6q = -72$

 5. $\frac{a}{5} = 3$
 6. $\frac{2b}{9} = -1$

Solve the following equations. (7 - 12)

7.
$$2x + 1 = 7$$
8. $5h - 2 = 18$ 9. $6 = 8y + 14$ 10. $10 - 3k = -5$ 11. $4z + 3 = 5$ 12. $3 - 12n = 4$

Solve the following equations. (13 - 16)

13.
$$\frac{r+1}{2} = 5$$

14. $\frac{s+2}{3} = -3$
15. $\frac{1}{7}(c-2) = -1$
16. $\frac{40-d}{6} = 5$

Solve the following equations. (17 - 20)

17.
$$2(a+1) = 18$$
18. $5(b-2) = 20$ **19.** $3(p+9) = -15$ **20.** $-7(10-q) = 21$

Solve the following equations. (21 - 24)

21.
$$\frac{w}{3} + 1 = 10$$

22. $\frac{y}{2} - 5 = 6$
23. $4 + \frac{r}{5} = -12$
24. $7 - \frac{m}{4} = 3$

🖗 Level 2

Solve the following equations. (25 - 28)

25.
$$3a + \frac{2}{5} = 1$$

26. $\frac{1}{2} - \frac{b}{3} = 2$
27. $3 = -7x - 1.2$
28. $1 - 0.7y = -6$

Solve the following equations. (29 - 34)

29.
$$\frac{3y+7}{5} = 2$$
30. $-2 = \frac{4-2m}{9}$ **31.** $4(2p+1) = -12$ **32.** $3(5b-2) = -6$ **33.** $\frac{4s}{7} + 1 = 5$ **34.** $1 - \frac{2t}{5} = -4$

Solve the following equations. (35 - 38)

35.
$$\frac{y+2}{3} - 4 = 6$$

36. $\frac{2(q-3)}{5} = 4$
37. $-4 + \frac{6-3d}{2} = 8$
38. $\frac{2}{5}(7-2z) = -10$

More about Solving Equations

🖉 Level 1

Solve the following equations. (1 - 10)

- **2.** 2y + 5y = 141. 3x + x = 4**4.** 5q - 9q = 163. 7p - 4p = 66. 9 - 4d = 2d5. 8c = 4c - 207. 4 + 6a + a = -108. 1 - b - 7b = 9
- 9. r-1 = 3r+3
- Solve the following equations. (11 18)
- 11. 2(y+3) = y**13.** -(10-4k) = 6k14. 6(5+2s) = -3s15. 5b = 2(3-2b)**16.** 7 = -2(3t - 5)17. 3(1+x) = 7x - 9**18.** 4(2d-1) = d+3

Solve the following equations. (19 - 24)

19.
$$p + \frac{p}{2} = 3$$
 20. $\frac{q}{4} + \frac{q}{3} = 7$

 21. $2t - \frac{t}{6} = -11$
 22. $\frac{h}{3} - \frac{3h}{5} = -4$

 23. $\frac{w}{8} = \frac{1}{2} + \frac{w}{4}$
 24. $1 - \frac{r}{7} = \frac{2r}{3}$

A Level 2

Solve the following equations. (25 - 32)

- **25.** x 3x + 3 = 4x + 15
- **27.** 4y = 3(7 2y) 1
- **29.** 12 2k = 5(k 2) 6
- **31.** 3[2-5(q-1)] = -9

26. 7 - 4m + 3m = m + 1**28.** -8-3(r-1)=2r**30.** 7(h+6) = 6(2h-3)**32.** 3[4(1-2d)+3d] = d

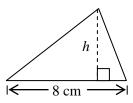
Solve the following equations. (33 - 42)

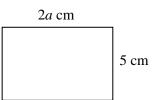
- **10.** -3+5s=6-4s
- 12. 4(z-1) = 3z

33.
$$8x - \frac{1}{2} = 4 - \frac{5x}{2}$$
 34. $\frac{5-x}{4} = 2x-1$

 35. $\frac{9-x}{3} = \frac{x-4}{2}$
 36. $5+3\left(\frac{x}{2}-1\right) = x$

 37. $-3(3x+2) = \frac{x}{3} - 6$
 38. $12(4-x) = \frac{4}{3}(1-2x)$


 39. $\frac{x-1}{3} + \frac{x}{4} = -1$
 40. $\frac{3x-5}{2} - x = -\frac{x}{3}$


 41. $\frac{2(x-3)}{9} - \frac{x}{6} = 2$
 42. $\frac{7-x}{11} - \frac{1-2x}{3} = x$

Applications of Algebraic Equations in One Unknown

🚽 Level 1

- 1. The sum of *x* and 10 is 25. Find the value of *x*.
- 2. The difference between *y* and 7*y* is 18. Find the value of *y*.
- 3. The result of multiplying z by 5 is the same as that of adding 32 to z. Find the value of z.
- 4. Peter has 100 stamps. After using *n* stamps, he still has 56 stamps. Find the value of *n*.
- 5. The total amount of (m + 1) \$2 coins is \$76. Find the value of m.
- 6. The area of the triangle in the figure is 20 cm^2 . If the base of the triangle is 8 cm, find its height *h*.
- 7. The perimeter of the rectangle in the figure is 42 cm. Find the value of *a*.

- 8. Hayley is *x* years old now. Patsy is 3 times as old as Hayley. After 5 years, Patsy will be 26 years old. Find the value of *x*.
- **9.** Mary pays \$100 for *k* towels and gets a change of \$20. If each towel costs \$16, what is the value of *k*?
- **10.** There are *y* girls in a school. The number of boys is less than that of girls by 52. If there are 880 students in the school, what is the value of *y*?
- 11. 120 marbles are divided into two groups. The number of marbles in the first group is one-third that of the second group. If there are *m* marbles in the second group, find the value of *m*.
- 12. In a supermarket, the price of an apple is \$3 and the price of an orange is \$*p*. Mrs Chan pays \$42 to buy 5 apples and 6 oranges. Find the value of *p*.

🖗 Level 2

- 13. Find two consecutive integers whose sum is 85.
- 14. Ella is a part-time tutor and her hourly wage is \$50. She worked h hours in a certain week. In the next week, she worked 2 hours more than the previous week. If the total income that Ella got in these 2 weeks is \$900, find the value of h.
- **15.** There are 16 chickens and some pigs in a farm. The chickens and the pigs have 100 feet in total. How many pigs are there in the farm?
- **16.** 66 sweets are shared between Bonnie and Kitty. If the number of sweets Bonnie gets is 2 more than 3 times that Kitty gets, how many sweets does Kitty get?
- 17. A piece of 200 cm long wire is cut into two parts and then bent into 2 squares. If the length of each side of one square is 18 cm, find the length of each side of the other square.
- **18.** In a theme park, the price of a child ticket is half of the price of an adult ticket. Mr Lee, Mrs Lee and their two children went to the theme park and they paid \$960 for tickets in total. Find the price of an adult ticket.
- **19.** The height of Amy is $\frac{4}{5}$ of Stephen, while the height of Stephen is $\frac{5}{6}$ of Mr Wong. If Mr Wong is taller than Amy by 60 cm, find the height of Mr Wong.
- **20.** A sum of \$500 is shared among *A*, *B* and *C*. *B* receives \$80 more than *A*, while *C* receives \$40 more than *B*. *A* claims that the amount he receives is less than half of the amount of *C*. Do you agree? Explain your answer.
- **21.** Desmond and Jay have \$800 in total. If Desmond gives \$160 to Jay, Jay will have 4 times as much as Desmond has. How much does Desmond have originally?
- **22.** Eva and Howard are walking along the same straight road in the same direction. Eva is 100 m ahead of Howard. The walking speed of Howard is twice that of Eva. If it takes 40 s for Howard to overtake Eva, find the walking speed for each of them.
- **23.** The net weights of two packages of nuts *A* and *B* are 350 g and 280 g respectively. In order to make the net weight of package *A* 4 times as that of package *B*, Ivy claims that at least 150 g of nuts must be taken from package *B* to package *A*. Do you agree? Explain your answer.

Multiple Choice Questions

🛯 Level 1

- **1.** Which of the following is an algebraic equation in one unknown?
 - **A.** 4x = y
 - **B.** 2x + 9 = 0
 - **C.** *y*−1
 - **D.** *xy* = 1
- 2. Which of the following is the solution of 6-15x = 9?

A.
$$x = -\frac{1}{5}$$
 B. $x = -\frac{1}{3}$
C. $x = \frac{1}{5}$ **D.** $x = \frac{1}{3}$

- 3. The solution of 5(2x-1) = -6 is A. x = -1.
 - **B.** x = -0.1.
 - **C.** x = 0.1.
 - **D.** x = 1.
- 4. The root of $\frac{5+2a}{3} = -1$ is A. -4. B. -1. C. 1. D. 4.
- 5. Solve the equation 3(2-x) + 2(3)
 - Solve the equation 3(2-x) + 2(3-x) = x. **A.** x = -3**B.** x = -2
 - $\mathbf{D}, \quad \mathbf{X} = -\mathbf{A}$
 - **C.** x = 2
 - **D.** *x* = 3

6. Which of the following equations has the root 2?

A.
$$\frac{y}{6} - 1 = \frac{2y}{3}$$

B. $\frac{y}{6} - 1 = -\frac{2y}{3}$
C. $\frac{y}{6} + 1 = \frac{2y}{3}$
D. $\frac{y}{6} + 1 = -\frac{2y}{3}$

- 7. If 4 is added to 2 times of a number *x*, the sum is equal to the number *x*. Which of the following equations can represent the above word phrase?
 - **A.** (4+2)x = x**B.** 2x+4=x
 - $\mathbf{C.} \quad 4 \times 2 + x = 0$
 - **D.** 2 + 4x = x
- 8. Sammi saved \$600 last month. Daniel saved x more than Sammi. If their total savings last month was \$1500, which of the following equations can be used to find the value of *x*?
 - **A.** 600 + x = 1500
 - **B.** 600 x = 1500
 - **C.** 600 + (600 + x) = 1500
 - **D.** 600 + (600 x) = 1500

🖉 Level 2

- 9. Given that a = b, which of the following are correct?
 - I. a + 10 = b + 10

II.
$$2a - 5 = 2b - 5$$

III.
$$\frac{a}{3} = \frac{b}{3}$$

- A. I and II only
- **B.** I and III only
- C. II and III only
- **D.** I, II and III
- **10.** Ricky solves the equation

$\frac{-5x-(1)}{2}$	$\frac{x+2x}{2} = 10$ as follows:
Step 1	-5x - (1 + 2x) = 20
Step 2	-5x - 1 + 2x = 20
Step 3	-3x - 1 = 20
Step 4	-3x = 21
Step 5	x = -7

Which step does Ricky first make mistake?

- A. Step 1
- **B.** Step 2
- **C.** Step 3
- **D.** Step 4
- 11. Given that 2x + k = 9, where k is a constant. If the root of the equation is 5, find the value of k 1.
 - **A.** −2
 - **B.** −1
 - **C.** 1
 - **D.** 2

- **12.** \$360 is shared among *A* and *B*. The amount *A* receives is twice that of *B*. Find the amount *A* receives.
 - **A.** \$120
 - **B.** \$180
 - **C.** \$240
 - **D.** \$300
- 13. The price of an LCD monitor is \$600 more than one-third of the price of a portable computer. If the price of the LCD monitor is \$2200, what is the price of the portable computer?
 - **A.** \$1800
 - **B.** \$2800
 - **C.** \$4800
 - **D.** \$6400
- 14. The length of a rectangle is 4 cm more than the width. If the perimeter of the rectangle is 28 cm, find the area of the rectangle.
 - $\mathbf{A.} \quad 9 \text{ cm}^2$
 - **B.** 14 cm^2
 - **C.** 27 cm^2
 - **D.** 45 cm^2

Cross-topic & Challenging Qs

 \bigstar 1. **Cross-topic** The following table shows the test results of five students.

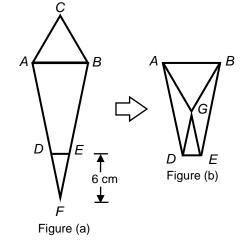
Student	A	В	С	D	E
Score	67	80	X	90	1.25 <i>x</i>

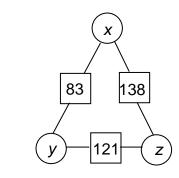
The average score of students D and E is 13.5 marks higher than the average score of students A, B and C.

- (a) Find x.
- (b) Hence, find the average score of the five students.
- **\bigstar 2.** Cross-topic In a game of 10 rounds, a person gets +5 points each round if he wins and gets -3 points each round if he loses. No points are awarded for a draw.
 - (a) Nancy loses 3 rounds and gets a total of +1 point. How many rounds does she win and draw respectively?
 - (b) It is known that Tony wins the first 4 rounds of the game. He claims that his score must be higher than Nancy's score after the 10 rounds. Do you agree? Explain your answer.
- \bigstar 3. Solve the following equations.

(a)
$$8x + 2(x+1) - 4(3x-2) + 1 = 10\left(x + \frac{1}{2}\right)$$
 (b) $\frac{2}{3}\left[\frac{x}{2} - 6\left(\frac{1-x}{2} + \frac{2x}{3}\right)\right] = \frac{x}{6} - 5$

- **★4.** (a) Solve the equation 4(x-9) + 3(x-9) + 2(x-9) + (x-9) = 55 + 5(x-9).
 - (b) Using the result in (a), solve the equation


$$4\left(1-\frac{2}{y}\right)+3\left(1-\frac{2}{y}\right)+2\left(1-\frac{2}{y}\right)+\left(1-\frac{2}{y}\right)=55+5\left(1-\frac{2}{y}\right).$$


- ★★5. The amount Tim spends on entertainment each month is $\frac{2}{3}$ of that of his sister, Mary. If Tim spends \$150 more and Mary spends \$150 less each month, then Mary's expenditure becomes $\frac{2}{3}$ of Tim's.
 - (a) How much does each of them spend on entertainment each month?
 - (b) Tim and Mary want to buy a bicycle and a TV game. The amount needed is \$140 less than twice of the total amount they spend on entertainment each month. If the price of the bicycle is $\frac{4}{13}$ of that of the TV game, what is the price of the TV game?
- ★★6. Michelle and Paul received red packets during the Chinese New Year. The amount of Paul's red packet money is greater than $\frac{5}{6}$ of that of Michelle by \$80. Michelle spent \$300 in buying

books and donated $\frac{1}{5}$ of her remaining amount to charity. Paul only donated $\frac{1}{2}$ of his red

packet money to charity. It is known that they had the same amount of red packet money left. Who received more red packet money? Explain your answer.

- ★★7. Cross-topic In a 2 km race, Jenny ran the first *n* m at an average speed of 3 m/s and the rest of the race at an average speed of 2 m/s.
 - (a) Express, in terms of *n*, the time taken for Jenny to finish the first *n* m race.
 - (b) If Jenny took 15 minutes to finish the whole race, find the value of n.
- ***8.** <u>Cross-topic</u> Figure (a) shows a kite whose height is 16 cm. It is then folded along AB and DE respectively to form trapezium ABED, where vertices C and F meet each other at G, as shown in Figure (b). It is known that DE is a line 6 cm from vertex F, AB = 7 cm and DE = 3 cm.
 - (a) What is the height of $\triangle ABC$ in Figure (a)?
 - (b) A student claims that the area of △ABG is greater than that of △DEG in Figure (b).
 Do you agree? Explain your answer.

- ★★9. In the figure, the number in each square is the sum of the numbers in the circles at two ends of the corresponding lines. (e.g. x + y = 83)
 - (a) Find x + y + z.
 - (**b**) Find the values of *x*, *y* and *z*.
- ★★★ 10. A ferry travels from pier *P* to pier *Q*. The travelling time downstream and upstream are 3 hours and 4 hours respectively. If the water flows at a speed of 1.5 km/h, find the distance between the two piers.

Answer Exercise 3A

Level 1

1.	-3	2.	-8	3.	
4.	12	5.	15	6.	$-\frac{9}{2}$
7.	3	8.	4	9.	-1
10.	5	11.	$\frac{1}{2}$	12.	$-\frac{1}{12}$
13.	9	14.	-11	15.	-5
16.	10	17.	8	18.	6
19.	-14	20.	13	21.	27
22.	22	23.	-80	24.	16

Level 2

25.	$\frac{1}{5}$	26.	$-\frac{9}{2}$	27.	-0.6
28.	10	29.	1	30.	11
31.	-2	32.	0	33.	7
34.	$\frac{25}{2}$	35.	28	36.	13
37.	-6	38.	16		

Exercise 3B

Lev	el 1				
1.	1	2.	2	3.	2
4.	-4	5.	-5	6.	$\frac{3}{2}$
7.	-2	8.	-1	9.	
10.	1	11.	-6	12.	4
13.	-5	14.	-2	15.	
16.	$\frac{1}{2}$	17.	3	18.	1
19.	2	20.	12	21.	-6
22.	15	23.	-4	24.	$\frac{21}{17}$

25.	-2	26.	3	27.	2
28.	-1	29.	4	30.	12
31.	2	32.	$\frac{3}{4}$	33.	$\frac{3}{7}$
34.	1	35.	6	36.	-4
37.	0	38.	5	39.	$-\frac{8}{7}$
40.	3	41.	48	42.	$\frac{5}{7}$

Exercise 3C

Level 1

1.	15	2.	3	3.	8
4.	44	5.	37	6.	5 cm
7.	8	8.	7	9.	5
10.	466	11.	90	12.	4.5

Level 2

13.	42, 43	14.	8	15.	17
16.	16	17.	32 cm	18.	\$320
19.	180 cm	20.	yes	21.	\$320
22.	Eva: 2.5 n	n/s, Ho	ward: 5 m/s		
23.	yes				

Exercise 3D

Level 1

1.	В	2.	А	3.	В	4.	А
5.	С	6.	С	7.	В	8.	С

Level 2

9.	D	10.	В	11.	А	12.	С
13.	С	14.	D				

Exercise 3E

1.	(a)	60	(b)	74.4
2.	(a)	win: 2 rour	nds, dr	aw: 5 rounds
	(b)	yes		
3.	(a)	$\frac{1}{2}$	(b)	6
4.	(a)	20	(b)	$-\frac{1}{5}$
5.	(a)	Tim: \$300,	Mary	: \$450
	(b)	\$1040		
6.	Mich	elle		
7.	(a)	$\frac{n}{3}$ s	(b)	600
8.	(a)	2 cm	(b)	no
9.	(a)	171		
	(b)	<i>x</i> = 50, <i>y</i> =	33, z	= 88
10.	36 kr	n		

English Version

2020 S1 Summer Exercise – Unit 9 Polynomial Laws of Positive Integral Indices

🖉 Level 1

Simplify the following expressions. (1 - 9)

- **1.** (a) $h \times h^2$ **(b)** $b(b^5)$ **2.** (a) $m^2(m^3)$ **(b)** $a^3 \times a^4$ 3. (a) $2x^3 \times x^2$ **(b)** $(y^5)(3y^3)$ 4. (a) $-5t^4 \times 2t$ **(b)** $(-4r^4)(-2r^2)$
- 5. (a) $2v^3 \times (-3v^7)$ **(b)** $(-6k^2)(-4k^6)$
- **(b)** $\frac{t^{20}}{t^5}$ **6.** (a) $a^{10} \div a$
- **(b)** $b^2 \div b^8$ **7.** (a) $m^6 \div m^3$
- **(b)** $\frac{7m^2}{m^9}$ 8. (a) $4x^{12} \div x^4$

9. (a)
$$\frac{6k^{10}}{-2k^3}$$
 (b) $-16d^2 \div (-8d^8)$

Simplify the following expressions. (10 - 16)

15. (a) $a^{20} \div 10a^9 \times 5a$

- **10. (a)** $a^5 \times a^4 \times a^3$ **(b)** $y^3 \times y^2 \times y^6$ **11.** (a) $2b \times 3b^4 \times b^4$ **(b)** $(-3x) \times x^3 \times 4x^7$ **12.** (a) $a^{18} \div a \div a^7$ **(b)** $n^9 \div n^6 \div n^5$ **(b)** $(-24m^5) \div (-2m) \div m^3$ **13.** (a) $18t^{14} \div t^3 \div 2t^8$
- **14.** (a) $a^{12} \div a^2 \times a^5$
- **(b)** $k^3 \times k^4 \div k^9$ $r^3 \times 8r^6$

(b)
$$\frac{x \times \delta x}{4x}$$

16. (a)
$$\frac{-16r^{10}}{-4r^5 \times 2r}$$
 (b) $\frac{6s^3}{10s^5 \times 3s^2}$

Simplify the following expressions. (17 - 24)

17. (a)
$$b^2 \times ab^2$$
(b) $p^4q \times p^2q^3$ **18.** (a) $(c^4d^2)(cd^3)$ (b) $(xy^2)(6x^7y^6)$ **19.** (a) $4h^2k^3 \times h^3k^3$ (b) $m^5n^6 \times (-3m^4n^8)$ **20.** (a) $7a^2b \times 3ab^2$ (b) $(-2r^5s^3)(-9r^6s^7)$ **21.** (a) $b^{10} \div a^4b^5$ (b) $\frac{c^9d^3}{c^6d^5}$ **22.** (a) $m^{12}n^5 \div m^6n^4$ (b) $3p^6q^4 \div (-p^2q^3)$ **23.** (a) $\frac{r^6s^7}{4r^3s^4}$ (b) $-8h^7k^2 \div (h^5k^4)$ **24.** (a) $4c^6d^5 \div 14c^5d^4$ (b) $-9a^7b^4 \div (-3a^3b^5)$

Simplify the following expressions. (25 - 26)

25. (a)
$$m^4 n^7 \times m^2 \times mn^5$$

(b) $\frac{x^3 y^9}{(x^5 y^6)(2x^4)}$
26. (a) $a^7 b \times 2a^3 b^5 \div a^9 b^4$
(b) $-2h^3 k^2 \div h^{12} k^9 \times (-12h^5 k^6)$

Polynomials

🚽 Level 1

1. Determine whether the following algebraic expressions are monomials.

a, 5b+1, $\frac{2}{c}$, 6xy, $-3h^2$, $\frac{7mn}{8}$

- 2. Write down the coefficients and the degrees of the following monomials.
 - (a) 3x (b) $-m^4$ (c) $-8x^2y$ (d) $\frac{pq^3}{2}$
- 3. In each of the following pairs of terms, determine whether they are like terms or unlike terms.

(a)
$$x, 2x$$
 (b) $-5abc, bca$

(c)
$$xy, x^2y^2$$
 (d) $-4a^3, \frac{a^3}{7}$

4. Complete the following table.

	Dolumontial	Number of	Coefficient of		Constant	Degree of	
	Polynomial	terms	x^3	x^2	x	term	polynomial
(a)	$5x^3 + 6x^2 + 3x + 2$						
(b)	$2x^3 + 1 - 3x$						
(c)	$-12 + \frac{x^2}{2}$						

5. Complete the following table.

	Polynomial	Number of terms	Constant term	Degree of polynomial
(a)	$1 - 7a^2b$			
(b)	$-8m^2-2mn^2-6$			
(c)	$4x^3y^3 - 5x^4y + xy - 3y^5$			

Arrange the terms of the following polynomials in descending powers of the variables, and in ascending powers of the variables. (6 - 7)

6. (a)
$$5x-6+3x^2$$

7. (a) $7x^2-12x-8-x^3$
(b) $3y^2+8y-6y^3$
(b) $-y+2-5y^4-y^3$

Simplify the following polynomials. (8 - 12)

8.	(a)	5x + 2x	(b)	$4h^2 - h^2$
9.	(a)	7 <i>y</i> -9 <i>y</i>	(b)	$-3k^2+10k^2$
10.	(a)	2d + 5d + 3	(b)	$-8e^2 - 7e + 16e^2$
11.	(a)	-5n-2m+6m+4n	(b)	$2p^2 + 8p - 3p^2 + p$
12.	(a)	-4b+12-6b-10+11b	(b)	$3y^2 - 2y - 5 - 6y - 7y^2$

Find the values of the following polynomials by substituting the given values of the variables. (13 - 16)

13. (a) 2a+3 [a=0](b) -5b+7 [b=1]14. (a) $4y^2-3y$ [y=-3](b) $-k+\frac{1}{2}k^3$ [k=-2]15. (a) $-2a+3a^2-7$ [a=2](b) $-4a^2-6a+3$ [a=-2]16. (a) $ab-b^2$ [a=4, b=3](b) $a^3-4a^2b+b^2$ [a=-1, b=-1]

🖗 Level 2

Simplify the following polynomials. (17 - 18)

17. (a) 4ab+3cd+7ab+2cd (b) 7pq-3rs-2pq-5rs**18.** (a) xz+2yz+3zy-7zx (b) $-3a^{2}b-7ab^{2}+10ba^{2}-5b^{2}a$

Simplify the following polynomials and arrange the terms in descending powers of x. (19 – 20) 19. (a) $8x^2 - 1 - 3x^2 - 6x^2$ (b) $5x^3 + 2x - 6x^3 + 7x$ 20. (a) $x + 7x^3 + 5x^2 - 3x^3 + 8x^2$ (b) $14 - 12x^2 - 4x^4 - 11 - 5x^4$ Simplify the following polynomials and arrange the terms in ascending powers of y. (21 - 22)

21. (a) $3y^3 + 2y - 6y + 10y^3$ (b) $-2y^4 + 7y^2 + 5y^2 - 10y^4$ **22.** (a) $3y^2 - 2y^3 + 12 - 6y^3 + 4y^2$ (b) $6y^4 + 2y^2 - 8y^4 - 8y^2 - 5y^4$

23. Arrange the terms of $3xy^3 + 2x^2y - 6y^2x^4 - 10y^4$

- (a) in ascending powers of *y*,
- (b) in descending powers of *x*.

24. Consider the polynomial $-4x^2y^3 - xy^2 + 7x^3y - 2xy^2 + x^2y^3$.

- (a) Simplify and arrange the terms in ascending powers of *x*.
- (b) Find the degree of the polynomial.

25. Find the value of the polynomial $h^2 + \frac{1}{2}h - 1$ in each of the following cases.

(a)
$$h = \frac{1}{2}$$
 (b) $h = -2$

- 26. Find the value of the polynomial $-x^2y^2 + 3xy 2y$ in each of the following cases.
 - (a) x = 2, y = 1 (b) $x = \frac{1}{3}, y = -3$
- 27. The numbers of books that Amy, Ben and Candy read last week were x + y, 2y x and xy 1 respectively. Miss Lee wants to give a present to the one who read the greatest number of books last week. Suppose x = 3 and y = 4. To whom will Miss Lee give the present? Explain your answer.
- **28.** In $\triangle ABC$, the lengths of *AB*, *BC* and *AC* are (2y 3x) cm, (y 6x) cm and (4x + 5y) cm respectively. Suppose x = -3 and y = 7. Which type of triangle does $\triangle ABC$ belong to?
- **29.** The perimeters of three squares A, B and C are $(x^2 + 4x)$ cm, $(x^3 + 8)$ cm and (7x + 6) cm respectively. Suppose x = 2.
 - (a) Find the perimeter of each square.
 - (b) Steven claims that square *B* has the greatest area. Do you agree? Explain your answer.

Addition and Subtraction of Polynomials

🚽 Level 1

Simplify the following expressions. (1 - 9)

1.	(a)	(5p+2) + (3p-2)	(b)	(3x-4) - (4x+1)
2.	(a)	(3h-k) + (h-2k)	(b)	(7a+2b)-(4a-3b)
3.	(a)	(2x+6y) + (-2y+3x)	(b)	(-s-8t)-(3t-5s)
4.	(a)	$(-2q^2+4)+(q^2-5)$	(b)	$(7y^2 + 2) - (6y^2 - 3)$
5.	(a)	$(6v^2 - 2v) + (7v + v^2)$	(b)	$(5c^2 - 3c) - (-2c + 4c^2)$
6.	(a)	$-(2m^2+n^2)+(m^2-4n^2)$	(b)	$-(4x^2+2y^2)-(5x^2+y^2)$
7.	(a)	(a-3) + (2a-7b+6)	(b)	(3s - t + 4) - (2s - 3t)
8.	(a)	(h - 3k + 1) + (2h - 3k + 2)	(b)	(m-6n-4)-(2m+9n-3)
9.	(a)	$(5k^2 - 2k + 6) + (k^2 + 4k - 8)$	(b)	$(3v^2 - 5v - 2) - (v^2 - 6v + 5)$

10. Simplify the following expressions and arrange the terms in descending powers of x. (a) $(3 + 5x + x^2) + (3x^2 + 7x)$ (b) $(5x - 3) - (7x^2 - 5x - 1)$

11. Simplify the following expressions and arrange the terms in ascending powers of y. (a) $(-7y + 4y^2 - 6) + (5y^2 + 9 + 10y)$ (b) $(8y - 9y^3 + 5) - (-2y^2 - 6y^3 + 5y)$

Con	nplete	e the	following operations. $(12 - 14)$			
12.	(a)		3x+4y	(b)		-5x-2y
		+)	5x - y		-)	3x - y

13. (a)
$$2a + 3b + 5$$

+) $4a - b - 1$ (b) $h^2 + 4k^2$
-) $2h^2 - 3k^2 + 1$

14. (a)
$$6m^2 + 2mn + 4n^2$$
 (b) $-2x^2 + 4xy$
+) $3mn - 5n^2$ –) $3x^2 - 5xy - 2y^2$

Evel 2

Simplify the following expressions. (15 - 18)

15. (a) $(a^{2} + ab) + (b^{2} - ab - a^{2})$ **16.** (a) $(xy - x^{2} + 2y^{2}) + (2x^{2} - 6yz - y^{2})$ **17.** (a) (p + r) + (q - 2r) + (p - 3q) **18.** (a) $(a^{2} - 4a) + (2a^{2} + 6) - (3a - 1)$ (b) $(hk - k^{2}) - (-k^{2} + hk - h^{2})$ (b) $(-a^{2} + 8ab - 6ab^{2}) - (7ba + b^{2}a + b^{2})$ (b) (a + 5b) - (2c - b) + (a - c) **18.** (a) $(a^{2} - 4a) + (2a^{2} + 6) - (3a - 1)$ (b) $(5m^{2} - 3m) - (8 - 3m) - (4m^{2} - 7)$

19. Simplify the following expressions and arrange the terms in descending powers of *a*.

- (a) $(-a^2 + 3ab) (ab 4a^2 + b^2)$
- **(b)** $(a^3 + 3a) (2a^2 4a) + (-4a^2 + 2a^3)$
- 20. Simplify the following expressions and arrange the terms in ascending powers of *b*.

(a)
$$(ab^2 + a^2b - b^3) + (-2ab^2 - 3b^3)$$

- **(b)** $(2b-b^2) (2b^2+4) (b-6)$
- 21. (a) Simplify (11 + 2x² 12x) (-5x + 12) and arrange the terms in descending powers of x.
 (b) Find the value of the above expression when x = -1.
- 22. Originally, there are (4a + 3) students studying in the library. Later, $(a^2 + 1)$ students come and (2a + 5) students leave the library.
 - (a) How many students are there in the library now?
 - (b) Suppose each student occupies only one seat and there are 50 seats in the library. If a = 5, how many empty seats are there now?
- **23.** Stephy prepares $(4x^2 + 3x 2)$ pieces of fried and non-fried chicken for a party, of which $(3x^2 6)$ pieces are non-fried chicken. It is given that (6x + 2) guests come to Stephy's party.
 - (a) How many pieces of fried chicken does Stephy prepare?
 - (b) Suppose x = 3. Is it possible for everyone, including Stephy, to have a piece of fried chicken? Explain your answer.

Multiplication of Polynomials

🚽 Level 1

Expand the following expressions. (1 - 11)

1.	(a)	2(a+3)	(b)	(b-5)(6)
2.	(a)	4(3c + 1)	(b)	(7 - 2d)(3)
3.	(a)	-7(2e+1)	(b)	(8f - 3)(-2)
4.	(a)	4(x - y)	(b)	-5(x-2y)
5.	(a)	r(7s-2t)	(b)	(3b-5c)(2a)
6.	(a)	g(3g + 2)	(b)	(5j - 4)(j)
7.	(a)	-3x(5-6x)	(b)	(-5y - 1)(-4y)
8.	(a)	$5h^2(h-3)$	(b)	$(m-4)(-2m^2)$
9.	(a)	-2(x-y+1)	(b)	(h + k - 3)(4)
10.	(a)	-3x(x+2y-4z)	(b)	(p-3r+5q)(2r)
11.	(a)	$6t(3t^2 - 2t + 1)$	(b)	$(4s^2 - s + 3)(-7s)$

Expand the following expressions. (12 - 20)

12.	(a)	(c+1)(c+3)	(b)	(f-1)(f-9)
13.	(a)	(2x+1)(x-3)	(b)	(3y-2)(y+1)
14.	(a)	(2-7t)(4-3t)	(b)	(5-4w)(2+5w)
15.	(a)	(9+4m)(2m-5)	(b)	(6n-1)(2-3n)
16.	(a)	(x+y)(2x+y)	(b)	(3h-k)(h-k)
17.	(a)	(m+n)(m-n)	(b)	(2p-q)(2p+q)
18.	(a)	(4a+5b)(2a-3b)	(b)	(7x-2y)(4x-3y)
19.	(a)	$(s+4)^2$	(b)	$(2c-3)^2$
20.	(a)	$(-h+3k)^2$	(b)	$(-6x-5y)^2$

Complet	e the fo	ollowing operations. $(21 - 2)$	3)		
21. (a)		4a - 5	(b)		2d - 7
	<u>×)</u>	2a+3		×)	<u>d-8</u>
22. (a)		3p + 4q $2p + q$	(b)	×)	-7x + 2y $6x - 2y$
23. (a)	<u>×)</u>	$\frac{2m^2 + 3m + 5}{m - 4}$	(b)		$\frac{3h^2-4h-1}{h^2-6}$

🖉 Level 2

Expand and simplify the following expressions, and arrange the terms in descending powers of the variables. (24 - 26)

24.	(a)	3(a+1) + 2(a+1)	(b)	6(c-1) - 2(c+5)
25.	(a)	2(2b+5)+3(-b-2)	(b)	5(-d+4) - 2(4d-1)
26.	(a)	-e(e+2) + 3e(e-1)	(b)	3f(3f-2) - 2f(2f+4)

Expand and simplify the following expressions, and arrange the terms in ascending powers of the variables. (27 - 28)

27. (a) (a+4)(a-5) + (4a+12) (b) (x-3)(2x+1) - 3(2x+4)**28.** (a) $2a^2 + (2a-7)^2$ (b) $(3x+2)^2 - (4x-7)(5)$

Expand and simplify the following expressions. (29 - 31)

29. (a) $-ab(2a^2 + 4ab - b^2)$ (b) $(4xy - 2y^2 - 3x^2)(4yz)$ **30.** (a) $(g^2 - g + 1)(3 + g)$ (b) $(4p^2 + 3p + 2)(-p - 1)$ **31.** (a) -4h(h+3)(3h-5)(b) 2r(3r+2t)(r+t)

- **32.** Jeffrey bought *x* melons at \$40 each and (x 1) watermelons at \$(2x + 7) each. How much did he pay for the melons and the watermelons?
- **33.** A wire of length (4x + 8y) cm is bent to form a square.

- (a) Find the length of the side of the square in terms of x and y.
- (b) Find the area of the square in terms of x and y.
- **34.** Betty goes to the supermarket to buy (2a + 3) cans of lemon juice at \$7 each and (a + 1) packs of potato chips at (3a 2) each for her daughter's birthday party.
 - (a) How much does Betty pay for the lemon juice and the potato chips?
 - (b) Suppose a = 4. Could Betty buy the above items with no more than \$120? Explain your answer.

Multiple Choice Questions

🖉 Level 1

- $1. \quad \frac{6a^2b^4}{2ab^2} =$
 - **A.** $4a^3b^3$ **B.** $4ab^2$
 - **D.** 4ab**C.** $3a^3b^3$
 - **D.** $3ab^2$
- **2.** Simplify $4p^6 \times (-2p^4)$.
 - **A.** -8
 - **B.** $-2p^2$
 - **C.** $-8p^{10}$
 - **D.** $-6p^{24}$
- **3.** Which of the following is a monomial?
 - **A.** 2x + 1
 - **B.** $3x^5$
 - C. $\frac{2}{x}$

- **D.** $\frac{x^2}{y}$
- 4. Find the constant term of the polynomial $6x^3 x^2 + 4x 5$.
 - **A.** -5
 - **B.** −1
 - **C.** 4
 - **D.** 5

5. Which of the following is NOT arranged in descending powers of *x*?

- **A.** $-2x^7 3x^6 4x^5 5x^4$
- **B.** $10x^3 + 9x^2 + 8x + 7$
- **C.** $5x^4 6x^3 + 7x^2 8x$
- **D.** $9x^2 + 8x^3 + 7x^4 + 6x^5$

6. Which of the following are like terms?

A. 2x, $2x^2$ **B.** $3x^5y$, xy^5 **C.** 4xyz, zyx x^2 2

D.
$$\frac{x^2}{2}, \frac{2}{x^2}$$

- 7. Simplify (2a+3b) (4a+5b). A. -2a - 2b
 - **B.** -2a + 8b
 - **C.** 6a 2b
 - **D.** 6a + 8b

8.
$$(a^2 + 2a - 4) + (2a + 6 - 3a^2) =$$

A. $-4a^2 + 4a - 10$
B. $-3a^2 + 2a - 2$
C. $-2a^2 + 4a - 10$
D. $-2a^2 + 4a + 2$

9. Expand (-2y)(6-4y). A. -16yB. $-12y + 8y^2$ C. $-8y - 6y^2$ D. $-4y^2$

10.
$$(8a + b)(a - 3b) =$$

A. $8a^2 - 3b^2$
B. $8a^2 - 24ab + 3b^2$
C. $8a^2 - 23ab - 3b^2$
D. $8a^2 + 25ab + 3b^2$

🖗 Level 2

11. Simplify
$$(-3p^{3}q^{2}r)(-7pq^{3}r^{4})$$
.
A. $21p^{3}q^{6}r^{4}$
B. $21p^{4}q^{5}r^{5}$
C. $-10p^{3}q^{6}r^{4}$
D. $-10p^{4}q^{5}r^{5}$

12.
$$\frac{2a+3a}{2a\times 3a} =$$
A.
$$\frac{5}{6}$$
B. 1
C.
$$\frac{1}{a}$$
D.
$$\frac{5}{6a}$$

13. What is the degree of the polynomial 5a³ + 3a²b²c² - 2abc - b⁵?
A. 4
B. 5
C. 6
D. 7

14. Find the value of $-\frac{x^2}{8} + \frac{xy}{4} + 3y^2$ when x = 2 and y = -1. **A.** 3 **B.** 2 **C.** -3 **D.** -4

15. Simplify $(-x+5x^2)-(1-4x)+(2x^2-3)$. **A.** $7x^2-5x-2$ **B.** $7x^2+3x-4$ **C.** $7x^2-5x-4$ **D.** $-3x^2+3x-4$

16.
$$-4(2a-1)+3(-a+2) =$$

A. $-11a+10$
B. $-11a+2$
C. $-5a+2$
D. $-5a+1$

Answers

Exercise 12A

Level 1

(a)	h^3	(b)	b^6
(a)	m^5	(b)	a^7
(a)	$2x^5$	(b)	$3y^8$
(a)	$-10t^{5}$	(b)	$8r^6$
(a)	$-6v^{10}$	(b)	$24k^{8}$
(a)	a ⁹	(b)	<i>t</i> ¹⁵
(a)	m^3	(b)	$\frac{1}{b^6}$
(a)	$4x^8$	(b)	$\frac{7}{m^7}$
(a)	$-3k^{7}$	(b)	$\frac{2}{d^6}$
(a)	a^{12}	(b)	<i>y</i> ¹¹
(a)	6 <i>b</i> ⁹	(b)	$-12x^{11}$
(a)	a^{10}	(b)	$\frac{1}{n^2}$
(a)	$9t^3$	(b)	12 <i>m</i>
(a)	<i>a</i> ¹⁵	(b)	$\frac{1}{k^2}$
(a)	$\frac{a^{12}}{2}$	(b)	$2x^8$
		(b)	$\frac{1}{5s^4}$
	 (a) 	(a) $2x^5$ (a) $-10t^5$ (a) $-6v^{10}$ (a) a^9 (a) m^3 (a) $4x^8$	(a) m^5 (b)(a) $2x^5$ (b)(a) $-10t^5$ (b)(a) a^9 (b)(a) a^9 (b)(a) m^3 (b)(a) $4x^8$ (b)(a) $-3k^7$ (b)(a) a^{12} (b)(a) a^{10} (b)(a) $9t^3$ (b)(a) a^{15} (b)(a) a^{12} (b)

Level 2

17.	(a)	ab^4	(b)	p^6q^4
18.	(a)	$c^5 d^5$	(b)	$6x^8y^8$
19.	(a)	$4h^{5}k^{6}$	(b)	$-3m^9n^{14}$
20.	(a)	$21a^{3}b^{3}$	(b)	$18r^{11}s^{10}$
21.	(a)	$\frac{b^5}{a^4}$	(b)	$\frac{c^3}{d^2}$
22.	(a)	m^6n	(b)	$-3p^4q$
23.	(a)	$\frac{r^3s^3}{4}$	(b)	$-\frac{8h^2}{k^2}$

24.	(a)	$\frac{2cd}{7}$	(b)	$\frac{3a^4}{b}$
25.	(a)	$m^7 n^{12}$	(b)	$\frac{y^3}{2x^6}$
26.	(a)	$2ab^2$	(b)	$\frac{24}{h^4k}$

Exercise 12B

1.	а, бл	$xy, -3h^2, \frac{7mn}{8}$		
2.	(a)	coefficient = 3,	degree	= 1
	(b)	coefficient = -	1, degre	e = 4
	(c)	coefficient = -3	8, degre	e = 3
	(d)	coefficient = $\frac{1}{2}$, degre	e = 4
3.	(a)	like terms	(b)	like terms
	(c)	unlike terms	(d)	like terms
4.				

	Number of	Co	efficient	t of
	terms	x^3	x^2	x
(a)	4	5	6	3
(b)	3	2	0	-3
(c)	2	0	$\frac{1}{2}$	0

	Constant term	Degree of polynomial
(a)	2	3
(b)	1	3
(c)	-12	2

	Number of terms	Constant term	Degree of polynomial
(a)	2	1	3
(b)	3	-6	3
(c)	4	0	6

- 6. (a) descending: $3x^2 + 5x 6$ ascending: $-6 + 5x + 3x^2$ (b) descending: $-6y^3 + 3y^2 + 8y$ ascending: $8y + 3y^2 - 6y^3$
- 7. (a) descending: $-x^3 + 7x^2 12x 8$ ascending: $-8 - 12x + 7x^2 - x^3$
 - (b) descending: $-5y^4 y^3 y + 2$ ascending: $2 - y - y^3 - 5y^4$

8.	(a)	7x	(b)	$3h^2$
9.	(a)	-2y	(b)	$7k^2$
10.	(a)	7 <i>d</i> + 3	(b)	$8e^2 - 7e$
11.	(a)	-n + 4m	(b)	$-p^{2} + 9p$
12.	(a)	<i>b</i> + 2	(b)	$-4y^2 - 8y - 5$
13.	(a)	3	(b)	2
14.	(a)	45	(b)	-2
15.	(a)	1	(b)	-1
16.	(a)	3	(b)	4

Level 2

17.	(a)	11ab + 5cd	(b)	5pq - 8rs
18.	(a)	-6xz + 5yz	(b)	$7a^2b - 12ab^2$
19.	(a)	$-x^2 - 1$	(b)	$-x^{3} + 9x$
20.	(a)	$4x^3 + 13x^2 + x$	(b)	$-9x^4 - 12x^2 +$
21.	(a)	$-4y + 13y^3$	(b)	$12y^2 - 12y^4$
22.	(a)	$12 + 7y^2 - 8y^3$	(b)	$-6y^2 - 7y^4$
23.	(a)	$2x^2y - 6y^2x^4 + 3.$	$xy^{3} - 1$	$0y^4$
	(b)	$-6y^2x^4 + 2x^2y +$	$3xy^3 -$	$10y^{4}$
24.	(a)	$-3xy^2 - 3x^2y^3 + $	$7x^3y$	
	(b)	5		
25.	(a)	$-\frac{1}{2}$	(b)	2
26.	(a)	0	(b)	2

- 27. Candy 28. isosceles triangle
- **29.** (a) square *A*: 12 cm, square *B*: 16 cm, square *C*: 20 cm
 - (**b**) no

Exercise 12C

Level 1

1.	(a)	8 <i>p</i>	(b)	-x - 5
2.	(a)	4h - 3k	(b)	3a + 5b
3.	(a)	5x + 4y	(b)	4s - 11t
4.	(a)	$-q^2 - 1$	(b)	$y^2 + 5$
5.	(a)	$7v^2 + 5v$	(b)	$c^2 - c$
6.	(a)	$-m^2 - 5n^2$	(b)	$-9x^2 - 3y^2$
7.	(a)	3a - 7b + 3	(b)	s + 2t + 4
8.	(a)	3h - 6k + 3	(b)	-m - 15n - 1
9.	(a)	$6k^2 + 2k - 2$	(b)	$2v^2 + v - 7$
10.	(a)	$4x^2 + 12x + 3$	(b)	$-7x^2 + 10x - 2$
11.	(a)	$3+3y+9y^2$	(b)	$5 + 3y + 2y^2 - 3y^3$
12.	(a)	8x + 3y	(b)	-8x - y
13.	(a)	6a + 2b + 4	(b)	$-h^2 + 7k^2 - 1$
14.	(a)	$6m^2 + 5mn - n^2$	(b)	$-5x^2 + 9xy + 2y^2$

Level 2

3

15.	(a)	b^2	(b)	h^2
16.	(a)	$xy + x^2 + y^2 - 6y$	z	
	(b)	$-a^2+ab-7ab^2$	$-b^2$	
17.	(a)	2p - r - 2q	(b)	2a + 6b - 3c
18.	(a)	$3a^2 - 7a + 7$	(b)	$m^2 - 1$
19.	(a)	$3a^2 + 2ab - b^2$	(b)	$3a^3 - 6a^2 + 7a$
20.	(a)	$a^2b - ab^2 - 4b^3$	(b)	$2 + b - 3b^2$
21.	(a)	$2x^2 - 7x - 1$		(b) 8
22.	(a)	$a^2 + 2a - 1$	(b)	16
23.	(a)	$x^2 + 3x + 4$	(b)	yes

Exercise 12D

1.	(a)	2 <i>a</i> + 6	b)	6b - 30
2.	(a)	12c + 4	(b)	21 - 6d

3.	(a)	-14e - 7	(b)	-16f + 6
4.	(a)	4x - 4y	(b)	-5x + 10y
5.	(a)	7rs - 2rt	(b)	6 <i>ab</i> – 10 <i>ac</i>
6.	(a)	$3g^2 + 2g$	(b)	$5j^2 - 4j$
7.	(a)	$-15x + 18x^2$	(b)	$20y^2 + 4y$
8.	(a)	$5h^3 - 15h^2$	(b)	$-2m^3 + 8m^2$
9.	(a)	-2x + 2y - 2	(b)	4h + 4k - 12
10.	(a)	$-3x^2 - 6xy + 12x$	z	
	(b)	$2pr - 6r^2 + 10qr$		
11.	(a)	$18t^3 - 12t^2 + 6t$	(b)	$-28s^3 + 7s^2 - 21s$
12.	(a)	$c^2 + 4c + 3$	(b)	$f^2 - 10f + 9$
13.	(a)	$2x^2 - 5x - 3$		(b) $3y^2 + y - 2$
14.	(a)	$8 - 34t + 21t^2$	(b)	$10 + 17w - 20w^2$
15.	(a)	$8m^2 - 2m - 45$	(b)	$-18n^2 + 15n - 2$
16.	(a)	$2x^2 + 3xy + y^2$	(b)	$3h^2 - 4hk + k^2$
17.	(a)	$m^2 - n^2$	(b)	$4p^2 - q^2$
18.	(a)	$8a^2 - 2ab - 15b^2$	(b)	$28x^2 - 29xy + 6y^2$
19.	(a)	$s^2 + 8s + 16$	(b)	$4c^2 - 12c + 9$
20.	(a)	$h^2 - 6hk + 9k^2$	(b)	$36x^2 + 60xy + 25y^2$
21.	(a)	$8a^2 + 2a - 15$	(b)	$2d^2 - 23d + 56$
22.	(a)	$6p^2 + 11pq + 4q^2$	(b)	$-42x^2 + 26xy - 4y^2$
23.	(a)	$2m^3-5m^2-7m$	- 20	
	(b)	$3h^4 - 4h^3 - 19h^2$	+ 24h	+ 6

Exercise 12E

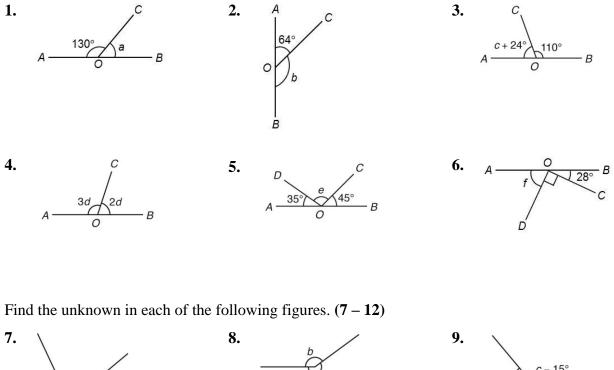
Level 1

1.	D	2.	С	3.	В	4.	Α
5.	D	6.	С	7.	А	8.	D
9.	В	10.	С				

Level 2

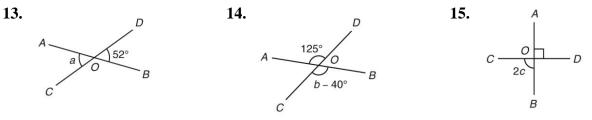
11.	В	12.	D	13.	С	14.	В
15.	В	16.	А				

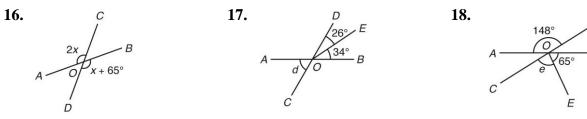
24.	(a)	5 <i>a</i> + 5	(b)	4 <i>c</i> – 16
25.	(a)	<i>b</i> + 4	(b)	-13d + 22
26.	(a)	$2e^2 - 5e$	(b)	$5f^2 - 14f$
27.	(a)	-8 + 3a + a	(b)	$-15 - 11x + 2x^2$
28.	(a)	$49 - 28a + 6a^2$	(b)	$39 - 8x + 9x^2$
29.	(a)	$-2a^{3}b - 4a^{2}b^{2} + a^{2}b^{2}$	ab^3	
	(b)	$16xy^2z - 8y^3z - 1$	$2x^2yz$	
30.	(a)	$g^3 + 2g^2 - 2g + 3$		
	(b)	$-4p^3 - 7p^2 - 5p - 5p$	- 2	
31.	(a)	$-12h^3 - 16h^2 + 6$	0h	
	(b)	$6r^3 + 10r^2t + 4rt^2$		
32.	\$(2x ²	$x^{2} + 45x - 7$)		
33.	(a)	(x + 2y) cm	(b)	$(x^2 + 4xy + 4y^2) \mathrm{cm}^2$
34.	(a)	$(3a^2 + 15a + 19)$)	
	(b)	no		
33.	\$(2x ² (a) (a)	$x^{2} + 45x - 7$) (x + 2y) cm $(3a^{2} + 15a + 19)$	(b)	$(x^2 + 4xy + 4y^2) \mathrm{cm}^2$


English Version

S1 Summer Exercise – Angles in Rectilinear Figure Angles related to Intersecting Lines

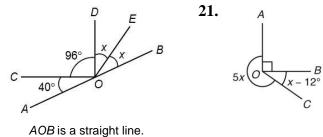
Level 1


T 38°


In each of the following figures, AOB is a straight line. Find the unknown. (1-6)

7. 8. 9. 9. 120° $c^{-15^{\circ}}$

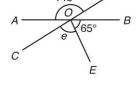
In each of the following figures, AB and CD intersect at O. Find the unknown. (13 – 18)

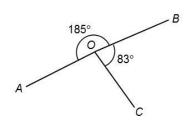


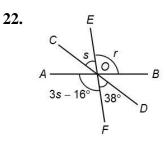
19. Refer to the figure on the right. Is $\angle AOC$ a right angle? Explain your answer.

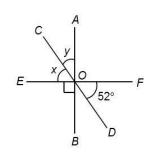
Level 2

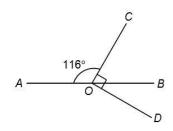
20.

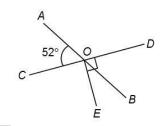

Find the unknown(s) in each of the following figures. (20 - 22)


23. In the figure, *AOB*, *COD* and *EOF* are straight lines. Find *x* and *y*.

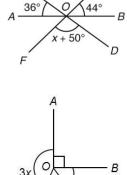

24. In the figure, *AOB* is a straight line. Find $\angle BOD$.




D



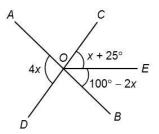
AOB, COD and EOF are straight lines.

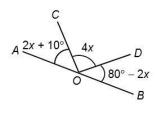


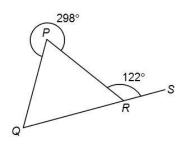
Mathematics in Action (3rd Edition)

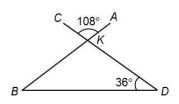
- **26.** In the figure, *AOB*, *COD* and *EOF* are straight lines. Find *x*. 50°
- 27. Refer to the figure on the right.
 - (a) Find x.
 - (b) Does *OC* bisect $\angle BOD$? Explain your answer.

- 28. In the figure, *AOB* and *COD* are straight lines.
 - (a) Find *x*.
 - (b) Does *OE* bisect $\angle COB$? Explain your answer.
- **29.** In the figure, *AOB* is a straight line.
 - (a) Find x.
 - (b) Is $OC \perp OD$? Explain your answer.
- **30.** In the figure, *QRS* is a straight line. Find $\angle PQR$.


31. In the figure, *AB* and *CD* intersect at *K*. Timothy claims that reflex $\angle KBD$ is three times $\angle AKC$. Do you agree? Explain your answer.

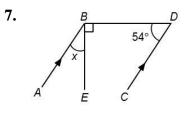


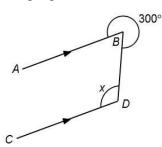

54

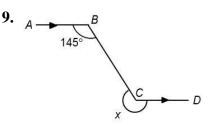

С

Ε

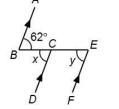
Angles related to Parallel Lines

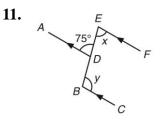

Level 1


2. 3. 1. X D Х - B A X Y 75° С 63° 115° b С D С B C Г 5. 4. 6. B D C X 34° Х 20° b 108° В d R 65 С D С D

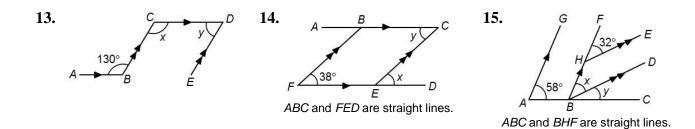

In each of the following figures, AB //CD and XY is a straight line. Find the unknown(s). (1 - 6)

Find the unknown(s) in each of the following figures. (7 - 15)


8.



10.


BCE is a straight line.

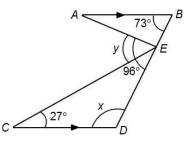
BDE is a straight line.

12.

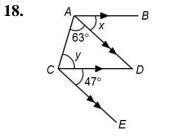
BDF is a straight line.

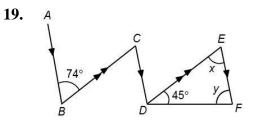
17.

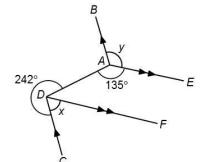
Level 2

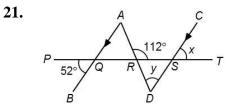

16.

20.

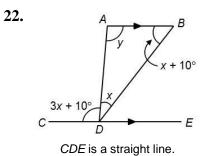

Find the unknowns in each of the following figures. (16 - 23)

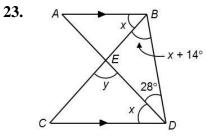


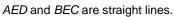

ABD, ACE and DEF are straight lines.



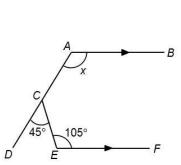
BED is a straight line.







AQB, ARD, CSD and PQRST are straight lines.



24. In the figure, *AB* // *CD*. $\angle BAE = 63^{\circ}$ and $\angle ECD = 48^{\circ}$. Find *x*.

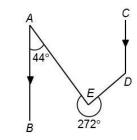
25. In the figure, *ACD* is a straight line. *AB* // *EF*, $\angle CEF = 105^{\circ}$ and $\angle DCE = 45^{\circ}$. Find *x*.

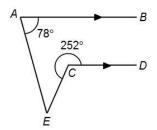
26. In the figure, AB // CD. $\angle BAE = 44^{\circ}$ and reflex $\angle AED = 272^{\circ}$. Find $\angle EDC$.

27. In the figure, $AB \parallel CD$. $\angle BAE = 78^{\circ}$ and reflex $\angle DCE = 252^{\circ}$. Find $\angle AEC$.

A

C

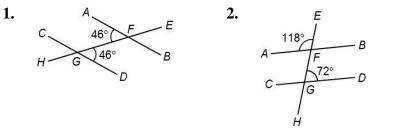

63°

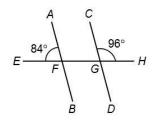

E

48°

в

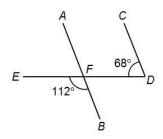
D

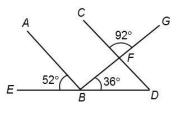


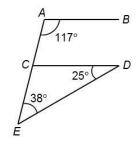


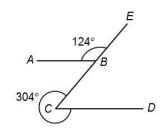
Identifying Parallel Lines

Level 1

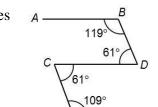

In each of the following figures, *EH* intersects *AB* and *CD* at *F* and *G* respectively. Determine whether *AB* is parallel to *CD*. If yes, state the reason. (1 - 3)

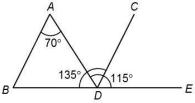





3.

- 4. In the figure, *AFB* and *EFD* are straight lines. $\angle EFB = 112^{\circ}$ and $\angle CDF = 68^{\circ}$. Is *AB* // *CD*? If yes, give a reason.
- 5. In the figure, *EBD*, *BFG* and *CFD* are straight lines. $\angle ABE = 52^{\circ}$, $\angle FBD = 36^{\circ}$ and $\angle CFG = 92^{\circ}$. Is *AB* parallel to *CD*? If yes, give a reason.
- 6. In the figure, *ACE* is a straight line. $\angle BAC = 117^{\circ}$, $\angle CED = 38^{\circ}$ and $\angle CDE = 25^{\circ}$. Determine whether *AB* is parallel to *CD* and give a reason.
- 7. In the figure, *EBC* is a straight line. $\angle ABE = 124^{\circ}$ and reflex $\angle BCD = 304^{\circ}$. Is *AB* // *CD*? If yes, give a reason.

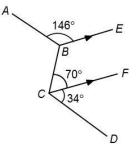


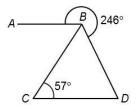

- 8. In the figure, *BC* bisects $\angle ABD$. Reflex $\angle ABD = 246^{\circ}$ and $\angle BCD = 57^{\circ}$. Determine whether AB is parallel to CD and give a reason.
- Refer to the figure on the right. Write down all the pairs of parallel lines 9. and give a reason for each pair of parallel lines.

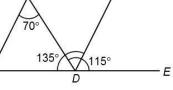
Level 2

- **10.** In the figure, *BDE* is a straight line. $\angle BAD = 70^{\circ}$, $\angle BDC = 135^{\circ}$ and $\angle ADE = 115^{\circ}$. Is *AB* parallel to *CD*? If yes, give a reason.
- 11. In the figure, AEB and CFD are straight lines. EF // BD, $\angle ABD = 65^{\circ}$ and $\angle CFE = 115^{\circ}$. Is AB parallel to CD? If yes, give a reason.

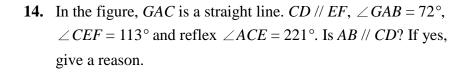
- **12.** In the figure, *BE* // *CF*. $\angle ABE = 146^\circ$, $\angle BCF = 70^\circ$ and $\angle FCD = 34^\circ$. (a) Find $\angle ABC$.
 - (b) Determine whether *AB* is parallel to *CD* and give a reason.



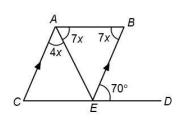

E

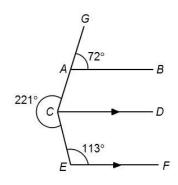

В

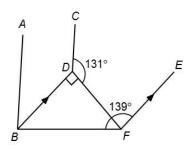
65°



115






- **13.** In the figure, *CED* is a straight line, *CA* // *EB* and $\angle BED = 70^{\circ}$.
 - (a) Find *x*.
 - (b) Determine whether *AB* is parallel to *CD* and give a reason.

15. In the figure, *BD* bisects $\angle ABF$. *BD* // *FE*, $\angle BDF = 90^{\circ}$, $\angle CDF = 131^{\circ}$ and $\angle BFE = 139^{\circ}$. Determine whether *AB* is parallel to *CD* and give a reason.

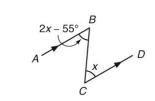
Multiple Choice Questions

Level 1

1. In the figure, *AOB* is a straight line. Find *x*.

50°

0


164°

E

В

- **A.** 25°
- **B.** 50°
- **C.** 65°
- **D.** 130°
- **2.** Find *y* in the figure.
 - **A.** 60°
 - **B.** 100°
 - **C.** 120°
 - **D.** 150°
- 3. In the figure, *AOB* and *COD* are straight lines. Find *w*.
 - **A.** 26°
 - **B.** 30°
 - **C.** 32°
 - **D.** 36°
- 4. In the figure, *AOB* and *COD* are straight lines. Find *x* and *y*.
 - A. $x = 42^{\circ}, y = 69^{\circ}$ B. $x = 42^{\circ}, y = 111^{\circ}$ C. $x = 69^{\circ}, y = 69^{\circ}$ D. $x = 69^{\circ}, y = 138^{\circ}$

- 5. Find x in the figure.
 - **A.** 37°
 - **B.** 43°**C.** 49°
 - **D.** 55°

D

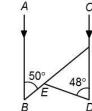
- 6. In the figure, *AFB*, *CGD* and *EFG* are straight lines. Find x. A. 42° B. 48° C. 52° D. 58° $E = \frac{132°}{F} = \frac{132°}{G}$
- In the figure, *EH* intersects *AB* and *CD* at *F* and *G* respectively. Find *y*.
 - A. 34° A
 E

 B. 56° J
 J

 C. 64° C
 V

 D. 86° C
 V
- **8.** Which of the following CANNOT be a condition for proving *AB* // *CD*?
 - A. a = dB. b = eC. $a + b = 180^{\circ}$ D. $a + c = 180^{\circ}$ C. $a + b = 180^{\circ}$ C. $a + b = 180^{\circ}$ C. $a + b = 180^{\circ}$ C. $a + c = 180^{\circ}$

Level 2


- **9.** In the figure, *ACE*, *BCD* and *DEF* are straight lines. Find $\angle CDE$.
 - **A.** 50°
 - **B.** 53°
 - **C.** 56°
 - **D.** 59°

10. In the figure, *AOB* is a straight line.

D

Find *x*.

- **A.** 50°
- **B.** 57.5°
- **C.** 60°
- **D.** 67.5°
- **11.** In the figure, *BEF* and *CFD* are straight lines. Find $\angle BED$.
 - **A.** 82°
 - **B.** 96°
 - **C.** 98°
 - **D.** 100°

B

110°

115°

F

- **12.** Find *x* in the figure.
 - A. 120°

 B. 130°

 C. 140°

 D. 150°
- **13.** In the figure, $\angle ADE = 130^{\circ}$ and $\angle BAC = 75^{\circ}$. Find $\angle ADC$. **A.** 50° **B.** 55° **C.** 60° **D.** 65° **B.** 55° **C.** 60°

- **14.** In the figure, *FBC* is a straight line. Which of the following must be correct?
 - I. $\angle BCD = 40^{\circ}$ II. $\angle ABF = 140^{\circ}$ III. FC // ED
 - A. I and II only
 - **B.** I and III only
 - C. II and III only
 - **D.** I, II and III
- 15. In the figure, *EH* intersects *AB* and *CD* at *F* and *G* respectively. If *a* = *b*, which of the following must be correct?
 - A. a = mB. b = nC. m = bD. m = n $C = \frac{A = \frac{F \land a}{b}}{\int_{B} D}$

Answers

Exercise 11A

Lev	el 1							
1.	50°	2.	116°					
3.	46°	4.	36°					
5.	100°	6.	62°					
7.	285°	8.	144°					
9.	255°	10.	258°					
11.	45°	12.	78°					
13.	52°	14.	165°					
15.	45°	16.	65°					
17.	60°	18.	83°					
19.	no							
Lev	el 2							
20.	22°	21.	47°					
22.	$s = 38^{\circ}, r = 98^{\circ}$	23.	$x = 52^{\circ}, y = 38^{\circ}$					
24.	26°	25.	38°					
26.	50°							
27.	(a) 54°	(b)	yes					
28.	(a) 25°	(b)	yes					
29.	(a) 22.5°	(b)	yes					
30.	60°	31.	yes					

Exercise 11B

Level 1

1.	115°	2.	63°
3.	105°	4.	$b = 72^{\circ}, c = 72^{\circ}$
5.	$d = 34^{\circ}, e = 146^{\circ}$	6.	45°
7.	36°	8.	120°
9.	215°	10.	$x = 62^\circ$, $y = 62^\circ$
11.	$x = 75^{\circ}, y = 105^{\circ}$	12.	$x = 96^{\circ}, y = 84^{\circ}$
13.	$x = 130^{\circ}, y = 50^{\circ}$	14.	$x = 38^\circ$, $y = 38^\circ$
15.	$x = 32^{\circ}, y = 26^{\circ}$		

Level 2

16.	$x = 68^{\circ}, y = 55^{\circ}$	17.	$x = 107^{\circ}, y = 50^{\circ}$
18.	$x = 47^{\circ}, y = 70^{\circ}$	19.	$x = 74^{\circ}, y = 61^{\circ}$
20.	$x = 73^{\circ}, y = 107^{\circ}$	21.	$x = 52^{\circ}, y = 60^{\circ}$
22.	$x = 32^{\circ}, y = 106^{\circ}$	23.	$x = 46^{\circ}, y = 88^{\circ}$
24.	111°	25.	120°
26.	136°	27.	30°

Exercise 11C

Lev	Level 1						
1.	yes, alt. $\angle s$ equal						
2.	no						
3.	yes, corr. $\angle s$ equal (or int. $\angle s$ supp.)						
4.	yes, int. $\angle s$ supp. (or corr. $\angle s$ equal or alt. $\angle s$						
equa	l)						
5.	yes, corr. $\angle s$ equal						
6.	yes, corr. $\angle s$ equal						
7.	yes, alt. $\angle s$ equal						
8.	yes, alt. $\angle s$ equal						
9.	$AB // CD$, int. \angle s supp.						
	$BD // CE$, alt. \angle s equal						
Lev	vel 2						
10.	yes, alt. \angle s equal (or int. \angle s supp.)						
11.	yes, int. $\angle s$ supp.						
12.	(a) 104° (b) yes, alt. $\angle s$ equal						
13.	(a) 10° (b) yes, alt. $\angle s$ equal						
14.	yes, corr. ∠s equal						
15.	yes, int. $\angle s$ supp.						

Exercise 11D

Level 1

1.	С	2.	С	3.	А	4.	В
5.	D	6.	А	7.	А	8.	С

9.	В	10.	А	11.	С	12.	В	
13.	В	14.	D	15.	D			